Motion Sequence Decomposition-Based Hybrid Entropy Feature and Its Application to Fault Diagnosis of a High-Speed Automatic Mechanism

نویسندگان

  • Baoxiang Wang
  • Hongxia Pan
  • Heng Du
چکیده

High-speed automatic weapons play an important role in the field of national defense. However, current research on reliability analysis of automaton principally relies on simulations due to the fact that experimental data are difficult to collect in real life. Different from rotating machinery, a high-speed automaton needs to accomplish complex motion consisting of a series of impacts. In addition to strong noise, the impacts generated by different components of the automaton will interfere with each other. There is no effective approach to cope with this in the fault diagnosis of automatic mechanisms. This paper proposes a motion sequence decomposition approach combining modern signal processing techniques to develop an effective approach to fault detection in high-speed automatons. We first investigate the entire working procedure of the automatic mechanism and calculate the corresponding action times of travel involved. The vibration signal collected from the shooting experiment is then divided into a number of impacts corresponding to action orders. Only the segment generated by a faulty component is isolated from the original impacts according to the action time of the component. Wavelet packet decomposition (WPD) is first applied on the resulting signals for investigation of energy distribution, and the components with higher energy are selected for feature extraction. Three information entropy features are utilized to distinguish various states of the automaton using empirical mode decomposition (EMD). A gray-wolf optimization (GWO) algorithm is introduced as an alternative to improve the performance of the support vector machine (SVM) classifier. We carry out shooting experiments to collect vibration data for demonstration of the proposed work. Experimental results show that the proposed work in this paper is effective for fault diagnosis of a high-speed automaton and can be applied in real applications. Moreover, the GWO is able to provide a competitive diagnosis result compared with the genetic algorithm (GA) and the particle swarm optimization (PSO) algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Fault diagnosis of gearboxes using LSSVM and WPT

This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...

متن کامل

A Hybrid EEMD-Based SampEn and SVD for Acoustic Signal Processing and Fault Diagnosis

Abstract: Acoustic signals are an ideal source of diagnosis data thanks to their intrinsic non-directional coverage, sensitivity to incipient defects, and insensitivity to structural resonance characteristics. However this makes prevailing signal de-nosing and feature extraction methods suffer from high computational cost, low signal to noise ratio (S/N), and difficulty to extract the compound ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017